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Abstract
We present a method to obtain higher order integrals and polynomial algebras
for two-dimensional quantum superintegrable systems separable in Cartesian
coordinates from ladder operators. All systems with a second- and a third-
order integral of motion separable in Cartesian coordinates were studied. The
integrals of motion of two of them do not generate a cubic algebra. We
construct for these Hamiltonians a higher order polynomial algebra from their
ladder operators. We obtain quintic and seventh-order polynomial algebras.
We also give for the polynomial algebras of order 7 realizations in terms
of deformed oscillator algebras. These realizations and finite-dimensional
unitary representations allow us to obtain the energy spectrum. We also apply
the construction to the caged anisotropic harmonic oscillator and a system
involving the fourth Painlevé transcendent.

PACS number: 03.65.Fd

1. Introduction

Over the years many articles were devoted to superintegrability [1–23]. We recall that in
classical mechanics a Hamiltonian system with Hamiltonian H and integrals of motion Xa

H = 1
2gikpipk + V (�x, �p), Xa = fa(�x, �p), a = 1, . . . , n − 1, (1.1)

is called completely integrable (or Liouville integrable) if it allows n integrals of motion
(including the Hamiltonian), that are well-defined functions on phase space, are in involution
{H,Xa}p = 0, {Xa,Xb}p = 0, a, b = 1, . . . , n − 1 and are functionally independent ({, }p is
a Poisson bracket). A system is superintegrable if it is integrable and allows further integrals
of motion Yb(�x, �p), {H,Yb}p = 0, b = 1, . . . , k, that are also well-defined functions on phase
space and the integrals {H,X1, . . . , Xn−1, Y1, . . . , Yk} are functionally independent. A system
is maximally superintegrable if the set contains (2n−1) such integrals. The integrals Yb are
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not required to be in involution with X1, . . . , Xn−1, nor with each other. The same definitions
apply in quantum mechanics but {H,Xa, Yb} are well-defined quantum mechanical operators
and are assumed to form an algebraically independent set. However, this definition ignores
more general relations between integrals. Finding an appropriate and rigorous definition of
the independence of quantum operators is a difficult task and there is no agreed definition of
quantum functional independence.

Superintegrable systems in classical and quantum mechanics possess many properties
and appear to be important from the point of view of mathematics and physics. A review
of two-dimensional classical and quantum superintegrable systems and their properties was
made in a recent article [13]. Their non-Abelian algebraic structure generated by their
integrals of motion can be a Lie algebra [1–3], a Kac–Moody algebra [20], a quadratic algebra
[12, 21–23] or a cubic algebra [13, 17, 18]. These polynomial algebras were related to the
deformed oscillator and parafermionic algebras [23] and can be used to obtain algebraically
the degenerate energy spectrum.

Superintegrable systems are also related to systems studied in supersymmetric quantum
mechanics (SUSYQM) [25–30] and higher order supersymmetric quantum mechanics
(HSQM) [31–36]. In recent articles, we discussed how systems with a second- and third-
order integral of motion are related to SUSYQM [17] and HSQM [18]. Supersymmetry
can also be used to generate quantum superintegrable systems with higher order integrals of
motion [19]. For well-known superintegrable systems such as the isotropic and the anisotropic
harmonic oscillator, the Kepler–Coulomb and Smorodinsky–Winternitz systems, the relation
between integrals of motion, ladder operators and supercharges have been discussed
[3, 6, 8, 37–43]. The relation between the integrals of motion of superintegrable systems
and intertwining operators was also discussed [44–46]. More recently, the integrals of motion
of finite-gap systems and reflectionless Pöschl–Teller were also related to supercharges in
hidden bozonized nonlinear supersymmetry [47, 48]. In the light of these results, it is
interesting to pose the following question: Can we obtain a connection between the integrals
of motion, supercharges and ladder operators for other quantum systems and in particular for
two-dimensional superintegrable systems with higher order integrals of motion?

In the two-dimensional Euclidean space E2 there are eight classical and fourteen quantum
systems with a second- and a third-order integral [13, 15, 17, 18]. The quantum systems were
investigated from the point of view of cubic algebras and supersymmetric quantum mechanics
[17, 18]. We obtained for these systems the supercharges, the wavefunctions and the energy
spectrum. For two of these quantum superintegrable systems, the integrals do not generate a
cubic algebra [17] but we constructed the ladder operators from the supercharges. The purpose
of this paper is to obtain the integrals and the polynomial algebra from ladder operators for
these systems but also for a certain class of superintegrable systems allowing the separation
of variables in Cartesian coordinates.

Let us present the organization of this paper. In section 2, we present a method to generate
higher order integrals and a polynomial algebra for two-dimensional Hamiltonians separable
in Cartesian coordinates constructed from two one-dimensional Hamiltonians and their ladder
operators. In section 3, we apply the results of section 2 to the Smorodinsky–Winternitz
potentials and three systems with a second- and a third-order integral of motion (potentials
1, 5 and 6 of [17]). In section 4, we give for a class of polynomial algebras of order 7
the realizations in terms of deformed oscillator algebras. In section 5, we use the results of
sections 3 and 4 to obtain the Fock-type unitary representations and the corresponding energy
spectrum of the potentials 5 and 6. In section 6, we apply the construction to the caged
anisotropic harmonic oscillator and construct a new system involving the fourth Painlevé
transcendent.
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2. Polynomial algebras

Let us consider a two-dimensional Hamiltonian separable in Cartesian coordinates

H(x, y, Px, Py) = Hx(x, Px) + Hy(y, Py), (2.1)

for which the ladder operators Ax, A
†
x , Ay and A

†
y (polynomials in momenta) exist and satisfy

relations of deformed oscillator algebras [49] or polynomial Heisenberg algebras [34]:

[
Hx,A

†
x

] = λxA
†
x, [Hx,Ax] = −λxAx, AxA

†
x = Q(Hx + λx), A†

xAx = Q(Hx),

(2.2)

[Hy,A
†
y] = λyA

†
y, [Hy,Ay] = −λyAy, Ay,A

†
y = S(Hy + λy), A†

yAy = S(Hy).

(2.3)

These relations can also be interpreted as polynomial superalgebras [31–37, 50], i.e.{
Ax,A

†
x

} = Q(Hx + λx) + Q(Hx). Many well-known one-dimensional quantum systems
possess ladder operators satisfying such algebraic structures [24–36].

The operators

f1 = A†m
x An

y, f2 = Am
x A†n

y (2.4)

commute with the Hamiltonian H given by equation (2.1)

[H, f1] = [H, f2] = 0, (2.5)

if

mλx − nλy = 0, m, n ∈ Z
+. (2.6)

The ladder operators allow us to construct polynomial integrals of motion. The following
sums are also polynomial integrals that commute with the Hamiltonian H:

I1 = A†m
x An

y − Am
x A†n

y , I2 = A†m
x An

y + Am
x A†n

y . (2.7)

The order of these integrals of motion depends on the order of the ladder operators. The
separation of variable in Cartesian coordinates implies the existence of a second-order integral
A = Hx−Hy [6]. The two-dimensional system given by equation (2.1) is thus superintegrable.
The ladder operators satisfy polynomial Heisenberg algebras (or polynomial superalgebras)
and can also provide a method to determine the polynomial algebra generated by the integrals
of motion of the two-dimensional superintegrable systems given by equation (2.1). Let us
now discuss two cases.

2.1. Case λx = λy = λ

We take the following linear combination:

A = 2(Hx − Hy), I1 = (
A†

xAy − AxA
†
y

)
, I2 = 4λ

(
A†

xAy + AxA
†
y

)
. (2.8)

We use the integrals given by equation (2.9) to construct polynomial algebras of the
Hamiltonian given by equation (2.1).

[A, I1] = I2, [A, I2] = 16λ2I1,

[I1, I2] = 8λ(Q
(

1
2

(
H + 1

2A
))

S
(

1
2

(
H − 1

2A
)

+ λ
)

−Q
(

1
2

(
H + 1

2A
)

+ λ
)
S

(
1
2

(
H − 1

2A
))

.

(2.9)
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2.2. Case 2λx = λy = λ

We take the following integrals:

A = 2(Hx − Hy), I1 = (
A†2

x Ay − A2
xA

†
y

)
, I2 = 4λ

(
A†2

x Ay + A2
xA

†
y

)
. (2.10)

The polynomial algebra is thus

[A, I1] = I2, [A, I2] = 16λ2I1,

[I1, I2] = 8λ(Q
(

1
2

(
H + 1

2A
) − λx

)
Q

(
1
2 (H + 1

2A)
)
S

(
1
2

(
H − 1

2A
)

+ λy

)
− Q

(
1
2

(
H + 1

2A
)

+ 2λx

)
Q

(
1
2

(
H + 1

2A
)

+ λx

)
S

(
1
2

(
H − 1

2A
))

.

(2.11)

For these two cases, the order of this polynomial algebra depends on the order of the
polynomials Q(Hx) and S(Hy). Examples of such construction were used to write the
angular momentum algebra as two independent harmonic oscillators [51] and obtain quadratic
algebras from Lie algebras [39]. We will present the general case in section 6.

3. Applications

There are two Smorodinsky–Winternitz potentials [6] that allow separation of variables of
the Schrödinger equation in Cartesian coordinates: Va(x, y) = ω

2 (x2 + y2) + b
x2 + c

y2 and

Vb(x, y) = ω2

2 (4x2 + y2) + bx + c
y2 . They are well-known quadratically superintegrable

systems and we apply the construction to these two systems. The potential Va has in the x axis
the following ladder operators:

A†
x = −1

4

(
h̄

ω

d2

dx2
− 2x

d

dx
+

ω

h̄
x2 − 2b

ωh̄x2
− 1

)
, (3.1)

Ax = −1

4

(
h̄

ω

d2

dx2
+ 2x

d

dx
+

ω

h̄
x2 − 2b

ωh̄x2
+ 1

)
. (3.2)

These operators were first obtained in [6] and reobtained in a systematic study of systems with
second-order ladder operators [52]. In the y axis there are ladder operators of the same form.
The polynomial Q(Hx) is given by

Q(Hx) = 1

4h̄2ω2
H 2

x − 1

2h̄ω
Hx +

(
3

16
− b

2h̄2

)
. (3.3)

The polynomial S(Hy) is also given by equation (3.3) (by replacing Hx by Hy and b by c).
We can form with Q(Hx), S(Hy), equations (2.8) and (2.9) the integrals and the polynomial
algebra. This polynomial algebra can also be determined for Vb. In the two cases the
polynomial algebra is a cubic algebra where the generators are second-, third- and fourth-
order operators. However, we can form a simpler algebraic structure for these Hamiltonians,
a quadratic algebra where the generators are two second-order and one third-order operators
[16]. The integrals obtained from the construction of section 2 are not necessarily the integrals
of the lowest possible order.

3.1. Systems with a third-order integral

We considered well-known quadratically superintegrable systems. We will apply the method
to potentials 1, 5 and 6, and present their integrals and polynomial algebras. The first system
that we consider is potential 1 [15, 17]:

H = 1

2
P 2

x +
1

2
P 2

y + h̄2

(
x2 + y2

8a4
+

1

(x − a)2
+

1

(x + a)2

)
. (3.4)

4
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In the x axis, the ladder operators were constructed from supersymmetry with the supercharge
[17] and are given by

Ax = h̄2

4a2

(
− d

dx
− 1

2a2
x +

(
1

x − a
+

1

x + a

)) (
x + 2a2 d

dx

)

×
(

d

dx
− 1

2a2
x +

(
1

x − a
+

1

x + a

))
, (3.5)

A†
x = h̄2

4a2

(
− d

dx
− 1

2a2
x +

(
1

x − a
+

1

x + a

)) (
x − 2a2 d

dx

)

×
(

d

dx
− 1

2a2
x +

(
1

x − a
+

1

x + a

))
, (3.6)

Ay = h̄

2a2

(
y + 2a2 d

dy

)
, A†

y = h̄

2a2

(
y − 2a2 d

dy

)
. (3.7)

We construct the known integral B of order 3 [15, 17] from equation (2.8)
(
B = I ′

1 = −2a2i
h̄

I1
)
.

We have λ = h̄2

2a2 . We have also presented the commutator of these ladder operators in [17].
In the x and y axes the polynomial Heisenberg algebras are given by equations (2.2) and (2.3)
with the following expressions:

Q(Hx) = 2H 3
x − 7

2

h̄2

a2
H 2

x +
7h̄4

8a4
Hx +

15h̄6

32a6
S(Hy) = 2Hy − h̄2

2a2
. (3.8)

We get from equation (2.9) of the previous section and equation (3.8) the following cubic
algebra that coincides with the one found in [17].

[A, I ′
1] = I ′

2, [A, I ′
2] = 4h4

a4
I ′

1, [I ′
1, I

′
2] = −2h̄2A3 − 6h̄2A2H + 8h̄2H 3 + 6

h̄4

a2
A2

+ 8
h̄4

a2
HA − 8

h̄4

a2
H 2 + 2

h̄6

a4
A − 2

h̄6

a4
H − 6

h̄8

a6
.

The energy spectrum was calculated from the Fock-type unitary representations [17]. In
section 4, we will extend this algebraic method of calculating the energy spectrum of
superintegrable systems with a polynomial algebra of order 7.

3.2. Potential 6

The next system that we consider is an Hamiltonian for which no polynomial algebra was
found from the second- and third-order integrals of motion. We will show how the procedure
of section 2 and the ladder operators obtained from supersymmetric quantum mechanics will
allow us to find a quintic algebra. The Hamiltonian

H = 1

2
P 2

x +
1

2
P 2

y + h̄2

(
x2 + y2

8a4
+

1

(x − a)2
+

1

(x + a)2
+

1

(y − a)2
+

1

(y + a)2

)
(3.9)

has the following second-order integral A = Hx − Hy and third-order integral:

B = 2L3 − 3α2
({

L,P 2
x

}
+

{
L,P 2

y

})
+

h̄2

4

{
(124y + 3

( y

a2

)
(x2 + y2) + 24y

(x2 − 5y2)

(y2 − a2)

− 144yx2

x2 − a2
+ 24y

(3x2 − y2)(x2 + a2)

(x2 − a2)2
+ 48y

(y2 − x2)(y2 + a2

(y2 − a2)
, Px

}

5
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− h̄2

4

{
(124x + 3

( x

a2

)
(y2 + x2) + 24x

(y2 − 5x2)

(x2 − a2)
− 144xy2

y2 − a2

+ 24x
(3y2 − x2)(y2 + a2)

(y2 − a2)2
+ 48x

(x2 − y2)(x2 + a2)

(x2 − a2)
, Py

}
. (3.10)

The ladder operators are given by equations (3.5) and (3.6) in the x and y axes (by replacing x
by y). The polynomial algebras in the x and y axes are given by equations (2.2) and (2.3) with
Q(Hx) given by equation (3.8) and S(Hy) by the same expression (by replacing Hx by Hy).

We have λ = h̄2

2a2 . The integrals of motion are given by equation (2.8)
(
I ′

1 = −2a2i
h̄

I1
)
. Thus,

we obtain with equation (2.9)

[A, I ′
1] = I ′

2, [A, I ′
2] = 4h̄4

a4
I ′

1, [I ′
1, I

′
2] = − 3

16
h̄2A5 +

3

2
h̄2A3H 2

− 2h̄4

a2
A3H − 3h̄2AH 4 +

8h̄4

a2
AH 3 +

19h̄6

8a4
A3 − 13h̄6

2a4
AH 2 − 99h̄10

16a8
A +

6h̄8

a6
AH.

(3.11)

The integrals I ′
1 is related to the integrals A, B by I ′

1 = −1
384h̄2 [A, [A,B]] + 3h̄2

32a4 B.

3.3. Potential 5

The Hamiltonian

H = 1

2
P 2

x +
1

2
P 2

y + h̄2

(
x2 + y2

8a4
+

1

(x + a)2
+

1

(x − a)2
+

1

y2

)
(3.12)

has a quadratic A = Hx − Hy and a cubic integral

B = 2L3 − 3a2{L,Py} + h̄2

{
3

4a2
− 6y3(x2 + a2)

(x2 − a2)2
− 3(x2 − a2)

y
− 2y, Px

}
,

3h̄2

{
x(

(x2 − 3a2)

y2
− (3y2 − 8a2)

12a2
− 2y2

x2 − a2
+

4y2(x2 + a2)

(x2 − a2)2
, Py

}
.

(3.13)

The integrals A, B and their commutator do not generate a cubic algebra. We will construct
other integrals of motion from the ladder operators. The ladder operators are given by
equations (3.1), (3.2) (by replacing x by y and ω by a), (3.5) and (3.6). We have in the x and y
axes polynomial algebras given by equations (2.2) and (2.3) with λ = h̄2

a2 and

Q(Hx) = 2H 3
x − 7

2

h̄2

a2
H 2

x +
7h̄4

8a4
Hx +

15h̄6

32a6
, S(Hy) = a4

h̄4 H 2
y − a2

h̄2 Hy − 5

16
. (3.14)

We obtain with equations (2.11) and (3.15) the following polynomial algebra with integrals
given by equation (2.10) (I ′

1 = a2I1):

6
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[A, I ′
1] = I ′

2, [A, I ′
2] = 16h̄4

a4
I ′

1,

[I ′
1, I

′
2] = 75h̄14

64a10
− 275Hh̄12

64a8
− 3H 2h̄10

16a6
+

261H 3h̄8

16a4
− 75H 4h̄6

4a2
+

15H 5h̄4

4

+ 3a2H 6h̄2 − a4A7

64
− a4H 7 + A6

(
7a2h̄2

64
− 7a4H

64

)

+ A5

(
− 3

16
H 2a4 +

9

16
Hh̄2a2 − 25h̄4

64

)

+ A4

(
45h̄6

64a2
− 85Hh̄4

64
+

5

16
a2H 2h̄2 +

5a4H 3

16

)

+ A3

(
21h̄8

64a4
+

5Hh̄6

8a2
+

15H 2h̄4

8
− 5

2
a2H 3h̄2 +

5a4H 4

4

)

+ A2

(
−127h̄10

64a6
+

239Hh̄8

64a4
− 85H 2h̄6

8a2
+

95H 3h̄4

8
− 15

4
a2H 4h̄2 +

3a4H 5

4

)

+ A

(
5h̄12

64a8
− 35Hh̄10

16a6
+

229H 2h̄8

16a4
− 55H 3h̄6

2a2
+

55H 4h̄4

4
+ a2H 5h̄2 − a4H 6

)
.

(3.15)

The integral I ′
1 is of order 7 and the integral I ′

2 is of order 8.

4. Realizations of polynomial algebras

In the previous section, we generated polynomial algebras of many systems. These algebras
were cubic-, quintic- and seventh-order algebras. In earlier articles it was demonstrated that
the quadratic [23] and cubic [17] algebras can be realized as deformed oscillator algebras
[49] that allow us to construct Fock-type representations and obtain the energy spectrum. We
will show that we can construct similar realizations for the following polynomial algebra of
order 7:

[A,B] = C, [A,C] = δB,

[B,C] = mA7 + nA6 + μA5 + νA4 + αA3 + βA2 + γA + ε,
(4.1)

where A and B are integrals and thus commute with the Hamiltonian H. The structure constants
m, n, μ, ν, α, β, γ and ε are polynomials of the Hamiltonian. We do not impose an order to
these integrals and only make the hypothesis that they generate an algebra of the form given
by equation (4.1). The Casimir operator satisfies [K,A] = [K,B] = [K,C] = 0, and this
implies

K = C2 − δB2 +
m

4
A8 +

2

7
nA7 +

(
μ

3
+

7

6
δm

)
A6 +

(
2

5
ν + δn

)
A5

+

(
α

2
+

5

6
δμ − 7

12
δ2m

)
A4 +

(
2

3
β +

2

3
δν − 1

3
δ2n

)
A3

+

(
δα

2
− 1

6
δ2μ + γ +

1

6
δ3m

)
A2 +

(
2ε +

1

3
δβ +

1

21
δ3n − δ2ν

15

)
A. (4.2)

The order of the Casimir operator depends on the order of A and B. Ultimately, the Casimir
operator is written in terms of the Hamiltonian. There is a realization in terms of deformed
oscillator algebras of the form

A = δ(N + u), B = b† + b, (4.3)

7
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where u is an arbitrary constant and {N, b, b†} satisfy

[N, b] = −b, [N, b†] = b†, bb† = 
(N + 1), b†b = 
(N). (4.4)

With the third relation of the seventh-order algebra given by equation (4.1) and the Casimir
operator given by equation (4.3) we find


(N) = m

16
δ3(N + u)8 +

(
nδ

5
2

14
− mδ3

4

)
(N + u)7 +

(
μδ2

12
+

7

24
mδ3 − nδ

5
2

4

)
(N + u)6

+

(
νδ

3
2

10
− μδ2

4
+

1

4
nδ

5
2

)
(N + u)5 +

(
αδ

8
+

5μδ2

24
− νδ

3
2

4
− 7

48
δ3m

)
(N + u)4

+

(
βδ

1
2

6
+

νδ
3
2

6
− αδ

4
− 1

12
δ

5
2 n

)
(N + u)3

+

(
δα

8
− δ2μ

24
+

γ

4
− βδ

1
2

4
+

1

24
δ3m

)
(N + u)2

+

(
ε

2δ
1
2

+
δ

1
2 β

12
− γ

4
− 1

84
δ

5
2 n − 1

60
δ

3
2 ν

)
(N + u) − ε

4δ
1
2

− K

4δ
. (4.5)

To obtain unitary representations we should impose three constraints on the structure
function


(p + 1, ui, k) = 0, 
(0, u, k) = 0, φ(x) > 0, ∀ x > 0. (4.6)

5. Potentials 5 and 6

Equation (4.5) gives the structure function in terms of the parafermionic number N and the
structure constants. The three conditions given by equation (4.6) provide a method to obtain the
energy spectrum. From the results of sections 4 and 3, we can found the unitary representations
and the corresponding energy spectrum for potentials 5 and 6.

5.1. Potential 6 and quintic algebras

The algebra of potential 6 is given by equation (3.12) is a particular case of the one given by
equation (4.1). The structure constants are

δ = 4h̄4

a4
, μ = −3h̄2

16
, ν = β = ε = 0,

α = 3

2
h̄2H 2 +

2h̄4

a2
H +

19h̄6

8a4
, γ = −3h̄2H 4 +

8h̄4

a2
H 3 − 13h̄6

2a4
H 2 +

6h̄8

a6
H − 99h̄10

16a8
.

(5.1)

This quintic algebra is generated by the integrals A, I ′
1 and I ′

2 respectively of orders 2,
5 and 6. We can write the Casimir operator given by equation (4.2) as a polynomial of the
Hamiltonian only:

K = −4h̄2H 6 +
16h̄4

a2
H 5 − 5h̄6

a4
H 4 − 40h̄8

a6
H 3 +

141h̄10

4a8
H 2 +

9h̄12

a10
H − 135h̄14

16a12
. (5.2)

We can find with equation (4.6) the structure function and factorize it in the following
way:

8



J. Phys. A: Math. Theor. 43 (2010) 135203 I Marquette


(x) = −h̄10

4a8

(
(x + u) −

(
a2E

h̄2 − 3

2

)) (
(x + u) −

(−a2E

h̄2 − 1

2

))
(

(x + u) −
(

a2E

h̄2 − 1

2

)) (
(x + u) −

(−a2E

h̄2 +
3

2

))

×
(

(x + u) −
(

a2E

h̄2 +
3

2

))(
(x + u) −

(−a2E

h̄2 +
5

2

))
.

(5.3)

To obtain unitary representations we should impose three constraints given by equation (4.6).
There are four solutions for a = ia0, a0 ∈ R. Let us present these unitary representations
with the corresponding constant u and energy spectrum:

Case: with u1 = a2E

h̄2 + 3
2

E1 = h̄2(p + 3)

2a2
0

, 
1(x) = h̄10

4a8
0

x(x + 2)(x + 3)(p + 4 − x)(p + 3 − x)(p + 1 − x),

(5.4)

Case: with u2 = a2E

h̄2 − 1
2 (p = 0,1)

E2 = h̄2(p + 1)

2a2
0

, 
3(x) = h̄10

4a8
0

x(x − 2)(p + 4 − x)(p + 3 − x)(p + 1 − x), (5.5)

Case: with u3 = a2E

h̄2 − 3
2 (p = 0, 1, 2 and p = 0 respectively)

E3a = h̄2(p)

2a2
0

, 
3a(x) = h̄10

4a8
0

x(x − 3)(p + 1 − x)(p + 3 − x)(p + 4 − x), (5.6)

E3b = h̄2(p − 3)

2a2
0

, 
3b(x) = h̄10

4a8
0

x(x − 3)(p + 1 − x)(p − 2 − x)(p − x). (5.7)

We must also exclude spurious states with other conditions. One of them consists in
E � min V . We have unitary representations valid only for p = 0, p = 0, 1 and p = 0,
1, 2. Such solutions were also found in the context of cubic algebras. This phenomenon
is related to zero modes, singlet state, doublet states and higher order supersymmetric
quantum mechanics [17, 18]. A singlet state is annihilated by the creation operator.
The energy spectrum is confirmed by the results obtained from supersymmetric quantum
mechanics.

There is one solution for the case a ∈ R with u = −a2E

h̄2 + 5
2 . The unitary representation

is (with p � 3)

E1 = h̄2(p + 5)

2a2
, 
1(x) = h̄10

4a8
x(p + 1 − x)(x + 3)(p + 4 − x)(p + 2 − x). (5.8)

5.2. Potential 5 and polynomial algebras of order 7

The algebra of potential 5 is given by (3.15). This case belongs to the one given by
equation (4.1). The structure constants are obtained by comparing equations (3.15) and
(4.1). This seventh-order algebra is generated by the integrals A, I ′

1 and I ′
2 respectively of

orders 2, 7 and 8. The Casimir operator given by equation (4.2) can be written as a function
of the Hamiltonian only:

9
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K = a4H 8 − 4a2h̄2H 7 + 3h̄4H 6 +
15h̄6

a2
H 5 − 453h̄8

8a4
H 4

+
261h̄10

4a6
H 3 − 133h̄12

16a8
H 2 − 275h̄14

16a10
H +

1425h̄16

256a12
. (5.9)

Equation (4.6) give us the structure function and we can factorize it in the following way:


(x) =
(

4h̄12

a8

) (
x + u −

(
−1

4
− a2E

2h̄2

)) (
x + u −

(
−1

4
+

a2E

2h̄2

))

×
(

x + u −
(

1

4
− a2E

2h̄2

))(
x + u −

(
3

4
− a2E

2h̄2

)) (
x + u −

(
5

4
− a2E

2h̄2

))

×
(

x + u −
(

5

4
− a2E

2h̄2

))(
x + u −

(
5

4
+

a2E

2h̄2

)) (
x + u −

(
7

4
− a2E

2h̄2

))
.

(5.10)

Let us present the solutions for the case a = a0i, a0 ∈ R. There are two solutions for
u = 5

4 + a2E

2h̄2 :

E1 = h̄2(5 + 2p)

2a2
0

, 
1(x) =
(

h̄12

4a8
0

)
x(p + 1 − x)(2p + 3 − 2x)(2p + 5 − 2x)2

(p + 2 − x)(p + 3 − x)(3 + 2x). (5.11)

E2 = h̄2(1 + p)

a2
0

, 
2(x) =
(

h̄12

4a8
0

)
(3 + 2p − 2x)(5 + 2p − 2x)2

(p + 1 − x)(p + 2 − x)(p + 3 − x)(−3 + 2x), p = 0. (5.12)

We confirmed these energy levels with the results obtained using the separability in Cartesian
coordinates and the SUSYQM.

There is one solution for the case a ∈ R. For u = 2 − a2E

h̄2 , we get

E1 = h̄2(p + 3)

a2
, 
1(x) =

(
h̄12

4a8

)
x(p + 1 − x)

(
x +

1

2

)2 (
x +

3

2

)
(x + 2)

(
p +

5

2
− x

)
.

(5.13)

6. General case mλx = nλy

We have presented examples satisfying λx = λy = λ and 2λx = λy = λ. We will now discuss
the general case. We will now consider integrals given by equation (2.4):

A = 1

2λ
(Hx − Hy), I− = Am

x A†n
y , I+ = A†m

x An
y. (6.1)

We obtain the polynomial algebra

[A, I−] = −I−, [A, I+] = I+, [I−, I+] = Fm,n(H,A + 1) − Fm,n(H,A), (6.2)

Fm,n =
m∏

i=1

Q

(
H

2
+ mλxA − (m − i)λx

) n∏
j

S

(
H

2
− nλyA + jλy

)
. (6.3)

We can define

b† = I+, b = I−, N = A − u, 
(H,N) = Fm,n(H,N + u). (6.4)

This algebra is thus a deformed oscillator algebra as given by equation (4.4).

10
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6.1. Applications

6.1.1. Caged anisotropic harmonic oscillator. We consider the caged anisotropic harmonic
oscillator [53, 54]

H = P 2
x

2
+

P 2
y

2
+

ω2

2
(k2x2 + m2y2) +

l1

x2
+

l2

y2
, (6.5)

where m, k ∈ Z
+. The method of separation of variables allows us to solve the corresponding

Schrödinger equation in terms of Laguerre polynomials [6] and to obtain the energy spectrum.
However, the polynomial algebra remains to be determined. We apply to this system the
construction of sections 2 and 6. Let us only show the creation operator in the x axis

A†
x = −1

4

(
h̄

ωk

d2

dx2
− 2x

d

dx
+

ωk

h̄
x2 − 2l1

ωkh̄x2
− 1

)
. (6.6)

The ladder operators satisfy the relations given by equations (2.2), (2.3) and (2.6) with
λx = 2h̄kω, λy = 2h̄mω and mλx = kλy . We can apply the results of section 2. We have

Q(Hx) = 1

4h̄2k2ω2
H 2

x − 1

2h̄kω
Hx +

(
3

16
− l1

2h̄2

)
. (6.7)

The integrals are given by equation (6.1). With equations (6.3) and (6.4) we obtain the
following structure function:


m,k(x) = m2k2
m∏

i=1

(
E

4mkh̄ω
+ x + u − 1 +

i

m
− 1

2m
− ν1

2m

)

×
(

E

4mkh̄ω
+ x + u − 1 +

i

m
− 1

2m
+

ν1

2m

) k∏
j=1

×
(

E

4mkh̄ω
− x − u +

j

k
− 1

2k
− ν2

2k

) (
E

4mkh̄ω
− x − u +

j

k
− 1

2k
+

ν2

2k

)
,

ν1 =
√

1 +
8l1

h̄2 , ν2 =
√

1 +
8l2

h̄2 . (6.8)

We should impose the constraints given by equation (2.17). We obtain the following solutions
with p = 1, 2, . . . , m, q = 1, 2, . . . , k and N ∈ N:

u = −E

4mkh̄ω
+

m − p

m
+

1

2m
+

ε1ν1

2m
,

E = 2mkh̄ω

(
N + 2 +

1 − 2p + ε1ν1

2m
+

1 − 2q + ε2ν2

2k

)
,

(6.9)


m,k(x) = m2k2
m∏

i=1

(
x +

i − p

m

)(
x +

i − p

m
+

ε1ν1

m

) k∏
j=1

×
(

N + 1 +
j − q

k
− x

) (
N + 1 +

j − q

k
+

ε2ν2

k

)
. (6.10)

6.1.2. System with Painlevé transcendent. In [15], five systems involving Painlevé
transcendent [55] were found. One of these systems was written as a function of the fourth
Painlevé transcendent:

H = P 2
x

2
+

P 2
y

2
+ g1(x) + g2(y), (6.11)

11
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g1(x) = ε1
h̄ω1

2
f

′
1

(√
ω1

h̄
x

)
+

ω2
1

2

(
x +

√
h̄

ω1
f1

(√
ω1

h̄
x

))2

+
h̄ω1

3
(−α1 + ε1), (6.12)

g2(y) = ω2
1

2
y2. (6.13)

We presented its cubic algebra, wavefunctions and ladder operators [18]. The Hamiltonians
with ε = 1 and ε = −1 are superpartners. They are also related to a special case of third-order

supersymmetry called the shape invariance [33]. The function f1 = f1
(√

ω1
h̄

x, α1, β1
)

is the

fourth Painlevé transcendent. The third-order ladder operators were also discussed in [30, 36].
The polynomial Heisenberg algebra of these operators was also obtained. They satisfy the
relation given by equations (2.2) and (2.3) with λx = h̄ω1 and

Q(Hx) = 8

(
Hx − h̄ω

3
(−α1 + ε1 + 3)

) ((
Hx − h̄ω

3

(
α1

2
+ 4ε1 − 3

2

))2

+
ω2h̄2β1

8

)
.

(6.14)

In the y axis we have the Heisenberg algebra of the harmonic oscillator. With results of
section 2 we can reobtain the third-order integral and the cubic algebra [18] of this
superintegrable systems. Let us now consider a system of the form given by equation (6.11)
with the function g1(x) satisfying the equation (6.12) and the function g2(y) satisfying also the
equation (6.12) (by replacing respectively x, f1, α1, β1, ω1 and ε1 by y, f2, α2, β2, ω2 and ε2).
We impose mω1 = nω2 = ω̃ with m, n ∈ Z

+. We thus have by the results of section 6
constructed a new superintegrable systems with higher order integrals. Thus, the method of
sections 2 and 6 can be used to generate new superintegrables systems with higher integrals
from known one-dimensional quantum systems with ladder operators. These one-dimensional
systems could be obtained in the context of SUSYQM or HSQM. This is interesting because
it was shown that the search and the classification of systems with the higher order integral of
motion is a difficult task [14, 15]. The polynomial algebra can be obtained in the form of a
deformed oscillator algebra. The structure function of the system given by equation (6.12) is
given by equations (6.3) and (6.4)


m,n(x) =
m∏

i=1

ω̃6h̄6

(
E

2h̄ω̃
+ x + u − 1 +

i

m
− γ0,1

)

×
(

E

2h̄ω̃
+ x + u − 1 +

i

m
− γ−,1

) (
E

2h̄ω̃
+ x + u − 1 +

i

m
− γ+,1

)
n∏

j=1

(
E

2h̄ω̃
− x − u +

j

n
− γ0,2

)(
E

2h̄ω̃
− x − u +

j

m
− γ−,2

)

×
(

E

2h̄ω̃
− x − u +

j

n
− γ+,2

)
, (6.15)

γ0,j = − 1

3m
(−3 + αj − εj ), γ±,j = h̄ω1

12m
(−6 + 2αj ± 3i

√
2βj + 16εj ). (6.16)

We obtain the finite-dimensional unitary representations and the corresponding energy
spectrum from equation (4.6). Let us present one of the nine solutions with p = 1, 2, . . . , m,
q = 1, 2, . . . , k and N ∈ N:

u1 = −E

2h̄ω̃
+ 1 − p

m
+ γ0,1, E1 = h̄ω̃

(
N + 2 − p

m
− q

n
+ γ1 + γ0,2

)
, (6.17)

12
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1 =
m∏
i

n∏
j

ω̃6h̄6

(
x +

i − p

m

) (
x +

i − p

m
+ γ0,1 − γ−,1

) (
x +

i − p

m
+ γ0,1 − γ+,1

)

×
(

N + 1 − x +
j − q

n

) (
N + 1 − x +

j − q

n
+ γ0,2 − γ−,2

)

×
(

N + 1 − x +
j − q

n
+ γ0,2 − γ+,2

)
. (6.18)

7. Conclusion

In this paper, we constructed the integrals of motion and the polynomial algebra for two-
dimensional Hamiltonians of the form given by equation (2.1) from the ladder operators of
the one-dimensional Hamiltonians Hx and Hy. The polynomial algebra for potentials 5 and 6
are respectively seventh-order and quintic algebras.

We have also studied the realization in terms of deformed oscillator algebras of a class of
the polynomial algebras of the seventh order. These results allowed us to obtain the structure
function for potentials 5 and 6 and to obtain unitary representations with their corresponding
energy spectrum. We studied with this method a family of caged anisotropic oscillator
and a new superintegrable system involving the fourth Painlevé transcendent. We found
the polynomial algebra, the finite-dimensional unitary representations and the corresponding
energy spectrum.

Superintegrable systems with third-order or higher order integrals do not coincide
[14, 15]. However, the method discussed in sections 2 and 6 of this paper could be discussed
in the context of classical mechanics in terms of the Poisson bracket and polynomial Poisson
algebras. These results could also be generalized for systems that separate in Cartesian
coordinates in higher dimensions.

The classification of systems with ladder operators or higher order supersymmetry is
important and could also allow us to find new superintegrable systems. A classification
of systems in E2 with second-order ladder operators and the relation with Smorodinsky–
Winternitz systems [6] was discussed in [52]. In context of supersymmetry, a class of
Hamiltonians with third-order ladder operators were discussed in [18, 33] and fourth-
order ladder operators in [34]. These systems involve respectively the fourth and the fifth
Painlevé transcendent. Superintegrability and their polynomial algebras, ladder operators and
supersymmetric quantum mechanics appear to be closely connected and the study of these
connections is important.
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